Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity

نویسندگان

چکیده

Using ideas from paracontrolled calculus, we prove local well-posedness of a renormalized version the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity forced by an additive space-time white noise on periodic domain. There are two new ingredients as compared to parabolic setting. (i) In constructing objects, have carefully exploit dispersion at multilinear level. (ii) We introduce novel random operators and leverage their regularity overcome lack smoothing usual paradifferential commutators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional solitary wave solution to the quadratic nonlinear Schrödinger equation

The solitary wave solution of the quadratic nonlinear Schrd̈inger equation is determined by the iterative method called Petviashvili method. This solution is also used for the initial condition for the time evolution to study the stability analysis. The spectral method is applied for the time evolution. Keywords—soliton, iterative method, spectral method, plasma

متن کامل

Differential Transform Method to two-dimensional non-linear wave equation

In this paper, an analytic solution is presented using differential transform method (DTM) for a class of wave equation. The emphasis is on the nonlinear two-dimensional wave equation. The procedures introduced in this paper are in recursive forms which can be used to obtain the closed form of the solutions, if they are required. The method is tested on various examples, and the results reveal ...

متن کامل

Damped Wave Equation with a Critical Nonlinearity

We study large time asymptotics of small solutions to the Cauchy problem for nonlinear damped wave equations with a critical nonlinearity { ∂2 t u+ ∂tu−∆u+ λu 2 n = 0, x ∈ Rn, t > 0, u(0, x) = εu0 (x) , ∂tu(0, x) = εu1 (x) , x ∈ Rn, where ε > 0, and space dimensions n = 1, 2, 3. Assume that the initial data u0 ∈ H ∩H, u1 ∈ Hδ−1,0 ∩H−1,δ, where δ > n 2 , weighted Sobolev spaces are H = { φ ∈ L; ...

متن کامل

Forced nonlinear Schrödinger equation with arbitrary nonlinearity.

We consider the nonlinear Schrödinger equation (NLSE) in 1+1 dimension with scalar-scalar self-interaction g(2)/κ+1(ψ*ψ)(κ+1) in the presence of the external forcing terms of the form re(-i(kx+θ))-δψ. We find new exact solutions for this problem and show that the solitary wave momentum is conserved in a moving frame where v(k)=2k. These new exact solutions reduce to the constant phase solutions...

متن کامل

Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity  

Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the European Mathematical Society

سال: 2023

ISSN: ['1435-9855', '1435-9863']

DOI: https://doi.org/10.4171/jems/1294